SOURCEBOOK SPSS ANNOTATED OUTPUT

Abstract: This chapter is intended to facilitate the connection between standard introductory statistics concepts and their implementation in SPSS. It shows the output from various types of analyses, describes how to interpret the output, and shows the link between hand calculation formulas and SPSS output. Results derive from the examples in the other sections of this project.

Keywords: SPSS output, annotation, statistical interpretation

Original: July 2009 Updated: January 2025

This document is part of an online statistics sourcebook.

A browser-friendly viewing platform for the sourcebook is available: <u>https://cwendorf.github.io/Sourcebook</u>

> All data, syntax, and output files are available: https://github.com/cwendorf/Sourcebook

TABLE OF CONTENTS FOR THIS CHAPTER

Frequencies (Frequencies and Descriptives)	3
Correlations	4
Explore (Confidence Intervals)	5
T-Test (One Sample t Test)	6
T-Test (Paired Samples t Test)	7
T-Test (Independent Samples t Test)	8
Oneway (OneWay ANOVA)	9
Oneway (Post Hoc Comparisons)	10
General Linear Model (Repeated Measures ANOVA)	11
Univariate Analysis of Variance (Factorial ANOVA)	13

	а /Г	<u> </u>			
Frequencie	Frequencies (F "N" provides the sample size for the er data set. "Missing" refers to the number entries that are blank, whereas "Valid"		size for the entire to the number of ereas "Valid" is t are not blank	The "Mean", "Standard Deviation", and "Variance" are all calculat unbiased estimates of the respective population parameter. Here is determined as the average of the scores weighted by their freq	ed as , the mean juencies:
	the num			$M = \frac{\Sigma(fY)}{M} = \frac{(2 \times 0) + (1 \times 3) + (2 \times 4) + (1 \times 5) + (1 \times 7) + (1 \times 7)}{(1 \times 7) + (1 \times $	$\frac{(\times 8)}{(-1)^{-1}} = 4$
Outcome		/		N = N = 8	- 1
N	Valid Missing	8		The "Variance" and "Std. Deviation" are both functions of the Sum (not shown in the output) of the scores in the frequency distribution	of Squares
Mean		4.0000			511.
Std. Deviation		3.11677		$SS = \sum f(Y - M)$	
Variance		9.714		$SS = 2(0-4)^2 + 1(3-4)^2 + 2(4-4)^2 + 1(5-4)^2 + 1(7-4)^2$	
Percentiles	25	2.2500		$+1(8-4)^2 = 68.000$	
-	50	4 0000			
-	75	5.5000		The "Variance" (i.e., Mean Squares) and "Std. Deviation" are calc	culated as:
				$MS = \frac{SS}{-68} = 0.714$	
			\times	$MS = \frac{1}{(N-1)} = \frac{1}{7} = 9.714$	
				<u> </u>	
				$SD = \sqrt{MS} = \sqrt{9.714} = 3.117$	
		Outcome		"Percentiles" provide the scores associated with particula	ar percentile
		Outcome		"Percentiles" provide the scores associated with particula ranks. For example, the 50 th percentile is the score in the	ar percentile following
		Outcome	Cumulative	"Percentiles" provide the scores associated with particula ranks. For example, the 50 th percentile is the score in the position:	ar percentile following
Valid 0.00	Frequency	Outcome Percent Valid Pe	ercent Cumulative Percent 25 0 25 0	"Percentiles" provide the scores associated with particula ranks. For example, the 50 th percentile is the score in the position: Position = $PR(N + 1) = .50(8 + 1) = 4.5$	ar percentile a following
Valid 0.00	Frequency 2	Outcome Percent Valid Pe 25.0	ercent Cumulative Percent 25.0 25.0	"Percentiles" provide the scores associated with particula ranks. For example, the 50 th percentile is the score in the position: Position = $PR(N + 1) = .50(8 + 1) = 4.5$ Thus, the score at the 50 th percentile is the 4.5 th score in	ar percentile oflowing the
Valid 0.00 3.00	Frequency 2 1	Outcome Percent Valid Pe 25.0 12.5	ercent Cumulative Percent 25.0 25.0 12.5 37.5	"Percentiles" provide the scores associated with particula ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of	ar percentile of following the .75 is at the
Valid 0.00 3.00 4.00 5.00	Frequency 2 1 2	Outcome Percent Valid Pe 25.0 12.5 25.0	ercent Percent 25.0 25.0 12.5 37.5 25.0 62.5	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = $PR(N + 1) = .50(8 + 1) = 4.5$ Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile.	the Information In
Valid 0.00 3.00 4.00 5.00 7.00	Frequency 2 1 2 1	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5	Cumulative ercent Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 75.0	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: <i>Position</i> = $PR(N + 1) = .50(8 + 1) = 4.5$ Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpolar	the Importantly, ated values.
Valid 0.00 3.00 4.00 5.00 7.00	Frequency 2 1 2 1 1 1	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5 12.5 12.5	Cumulative Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 75.0 12.5 75.0 12.5 75.0	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola	the .75 is at the Importantly, ated values.
Valid 0.00 3.00 4.00 5.00 7.00 9.00	Frequency 2 1 2 1 1 1	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5 12.5 12.5	Cumulative Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 87.5 12.5 87.5 12.5 100.0	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: <i>Position</i> = $PR(N + 1) = .50(8 + 1) = 4.5$ Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola	the .75 is at the Importantly, ated values.
Valid 0.00 3.00 4.00 5.00 7.00 9.00 Total	Frequency 2 1 2 1 1 1 8	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 100.0 0	Cumulative 25.0 25.0 12.5 37.9 25.0 62.9 12.5 75.0 12.5 75.0 12.5 75.0 12.5 75.0 12.5 75.0 12.5 100.0 100.0 100.0	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola	ar percentile of following the .75 is at the Importantly, ated values.
Valid 0.00 3.00 4.00 5.00 7.00 9.00 Tetal	Frequency 2 1 2 1 1 1 8	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 100.0 100.0	Cumulative Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 75.0 12.5 75.0 12.5 100.0 100.0 100.0	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola	the .75 is at the Importantly, ated values.
Valid 0.00 3.00 4.00 5.00 7.00 9.00 Total The "Valid" column the actual scores	Frequency 2 1 2 1 1 2 1 8	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5 12.5 12.5 12.5 100.0	Cumulative Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 87.5 12.5 100.0 100.0 25.0	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola The "Valid Percent" column provides the percentage of cases	ar percentile e following the .75 is at the Importantly, ated values.
Valid 0.00 3.00 4.00 5.00 7.00 9.00 Total The "Valid" column the actual scores data set "Freque	Frequency 2 1 2 1 1 1 8 8	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5 100.0 The "Percent" the percentage possible score	Cumulative Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 87.5 12.5 100.0 100.0 100.0 Column provides e of cases for each e. For example of	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola The "Valid Percent" column provides the percentage of cases for each possible score divided by	ar percentile following the .75 is at the Importantly, ated values. s the sum o and estion. For
Valid 0.00 3.00 4.00 5.00 7.00 9.00 Total The "Valid" column the actual scoress data set. "Frequent the number of timest	Frequency 2 1 2 1 1 8 mn lists all of s in the entire ency" indicates nes that score	Outcome Percent Valid Percent 25.0 12.5 25.0 12.5 12.5 12.5 100.0 The "Percent" the percentage possible score the 8 scores in	cumulative Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 87.5 12.5 100.0 12.5 100.0 12.5 column provides e of cases for each e. For example, of n the entire data	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola The "Valid Percent" column provides the percentage of cases for each possible score divided by the total number of cases. Here,	ar percentile e following the .75 is at the Importantly, ated values. s the sum o and estion. For ores were a
Valid 0.00 3.00 4.00 5.00 7.00 9.00 Total The "Valid" colum the actual scores data set. "Freque the number of tim exists. For exam	Frequency 2 1 2 1 1 8 nn lists all of a in the entire ency" indicates hes that score ple, the score	Outcome Percent Valid Pe 25.0 12.5 25.0 12.5 12.5 12.5 100.0 The "Percent" the percentage possible score the 8 scores in set, the score	Cumulative Percent 25.0 25.0 12.5 37.5 25.0 62.5 12.5 75.0 12.5 75.0 12.5 100.0 100.0 7 column provides e of cases for each e. For example, of n the entire data of 4 was listed 2	"Percentiles" provide the scores associated with particular ranks. For example, the 50 th percentile is the score in the position: Position = PR(N + 1) = .50(8 + 1) = 4.5 Thus, the score at the 50 th percentile is the 4.5 th score in frequency distribution – a score of 4. Similarly, a score of 25 th percentile and a score of 6.5 is at the 75 th percentile. in some cases, the score values are non-integer interpola The "Valid Percent" column provides the percentage of cases for each possible score divided by the total number of cases. Here, there were no missing scores, so	ar percentile e following the .75 is at the Importantly, ated values. s the sum o and estion. For pres were a 37.5%

Correlations

These values of the statistics are identical to the values that would be provided by the "Frequencies" or "Descriptives" commands. See the earlier annotated output for details of how these are computed from frequency distributions. Note that they are calculated separately for each variable.

	Correlations	\frown	
		Outcome 1	Outcome 2
Outcome 1	Pearson Correlation	1	.500
	Sig. (2-tailed)		.500
	Sum of Squares and Cross-products	18.000	9.000
	Covariance	6.000	3.000
	N	4	$\lambda = 4$
Outcome 2	Pearson Correlation	.500	
	Sig. (2-tailed)	.500	
	Sum of Squares and Cross-products	9.000	18.000
	Covariance	3.000	6.000
	Ν		4

*. Correlation is significant at the 0.05 level (2-tailed).

This box presents information about the first variable that can be derived from the "Std. Deviation" above. The "Covariance" here actually represents the estimated Variance (or Mean Squares) of the variable: $MS = SD^2 = 2.44949^2 = 6.000$. The "Sum of Squares" for this variable is then found (knowing that $SS = MS \times dt$) to be equal to 18.000. Finally, note that, by definition, the variable is perfectly correlated with itself (r = 1.0). These boxes represent the conjunction of both variables and therefore present the statistics relevant to the relationship between the two variables. (Thus, the boxes are redundant.)

This "Sum of Cross Products" (SCP) is not easily determined from the summary statistics of the output, but rather from the data (and the calculations are therefore not shown here).

The "Covariance" is a function of the Sum of Cross Products and the sample size:

$$COV = \frac{SCP}{(N-1)} = \frac{9.000}{(4-1)} = 3.000$$

The "Pearson Correlation" coefficient is a function of the covariance and the standard deviations of both variables:

$$r = \frac{COV}{(SD_X)(SD_Y)} = \frac{3.000}{(2.449)(2.449)} = .500$$

Though the statistic is not shown, *t* provides the standardized statistic for testing whether the correlation differs from zero:

$$t = \frac{r}{\sqrt{(1 - r^2)/(N - 2)}} = \frac{.500}{\sqrt{(1 - .500^2)/(4 - 2)}} = .816$$

The *t* statistic follows a non-normal (studentized or *t*) distribution that depends on degrees of freedom. Here, df = N - 2 = 4 - 2 = 2. A *t* with 2 *df* that equals .816 has a two-tailed probability (*p*) of .500, which is not a statistically significant finding.

This box presents information about the second variable that can be derived from the "Std. Deviation" above. The "Covariance" here actually represents the estimated Variance (or Mean Squares) of the variable: $MS = SD^2 = 2.44949^2 = 6.000$. The "Sum of Squares" for this variable is then found (knowing that $SS = MS \times df$) to be equal to 18.000. Finally, note that, by definition, the variable is perfectly correlated with itself (r = 1.0).

Explore (Confidence Intervals)

Std. Deviation

Interquartile Range

Minimum

Maximum Range

Skewness

Kurtosis

Case Processing Summary									
	Cases								
	Va	id	Mis	sing	То	tal			
	Ν	Percent	Ν	Percent	Ν	Percent			
Outcome	8	88.9%	1	11.1%	9	100.0%			
	Descriptives								
					Statistic	Std. Error			
Outcome	Mean				4.0000	1.10195			
	95% Confider	ice Interval for	Lower E	ound	1.3943				
	Mean Upper Bound				6.6057				
	5% Trimmed	viean			3.9444				
	Median				4.0000				
	Variance				9.714				

The values of the descriptive statistics in this tables – like the "Mean", "Variance", and "Std. Deviation" – are identical to the values that would be provided by the "Frequencies" or "Descriptives" commands. See the earlier annotated output for details of how these are computed from frequency distributions.

The "Standard Error of the Mean" provides an estimate of how spread out the distribution of all possible random sample means would be. Here it's calculated as:

$$SE_M = \frac{SD}{\sqrt{N}} = \frac{3.117}{\sqrt{8}} = 1.102$$

This section provides a confidence interval around (centered on) the "Mean." Calculation requires the appropriate critical value. Specifically, the *t* statistic (with 7 *df*) that has a probability of .05 equals 2.365. As a result:

$$CI_M = M \pm (t_{CRITICAL})(SE_M) = 4.000 \pm (2.365)(1.102)$$

Thus, the researcher estimates that the true population mean is somewhere between 1.394 and 6.606 (knowing that the estimate could be incorrect).

3.11677

.00. 9.00

9.00

5.75

.151

-.467

.752

1.481

The "t", "df", and "Sig." columns provide the results of the statistical significance test. First, *t* provides the standardized statistic for the mean difference:

$$t = \frac{M - \mu}{SE_M} = \frac{-3.000}{1.102} = -2.722$$

The *t* statistic follows a non-normal (studentized or *t*) distribution that depends on degrees of freedom. Here, df = N - 1 = 8 - 1 = 7. A *t* with 7 *df* that equals -2.722 has a two-tailed probability (*p*) of .030, a statistically significant finding.

This section provides a confidence interval around (centered on) the "Mean Difference." Calculation requires the appropriate critical value. Specifically, the *t* statistic (with 7 *df*) that has a probability of .05 equals 2.365. As a result:

$$CI_{DIFF} = M_{DIFF} \pm (t_{CRITICAL})(SE_M) = -3.000 \pm (2.365)(1.102)$$

Thus, the researcher estimates that the true population mean difference is somewhere between -5.606 and -.394 (knowing that the estimate could be incorrect).

PAGE 7 OF 13

 $t = \frac{M_1 - M_2}{SE_{DIFF}}$ $t = \frac{-4.000}{1.732} = -2.309$

The t statistic follows a non-normal (studentized or t) distribution that depends on degrees of freedom. Here, df = N - 2 = 8 - 2 = 6. A *t* with 6 df that equals -2.309 has a two-tailed probability (p) of .060, a finding that is not statistically significant.

The "Standard Error of the Difference" is a function of the two groups' individual standard errors. When sample sizes are equal:

$$SE_{DIFF} = \sqrt{SE_1^2 + SE_2^2}$$
$$SE_{DIFF} = \sqrt{1.225^2 + 1.225^2} = 1.732$$

This value is important for both the significance test and the confidence interval. [Importantly, the computation of the standard error of the difference is more complex for unequal sample sizes.1

the t statistic (with 6 df) that has a probability of .05 equals 2.447. As a result:

$$CI_{DIFF} = M_{DIFF} \pm (t_{CRITICAL})(SE_{DIFF})$$

$$CI_{DIFF} = -4 \pm (2.447)(1.732)$$

Thus, the researcher estimates that the true population mean difference is somewhere between -8.238 and 0.238 (knowing that the estimate could be incorrect).

Oneway (One	These valu are calcula group. The values obt variable as	ues of the ated separ ey are not tained fror s a whole.	group statistics rately for each identical to the n analyzing the	S Thes sepa	Se are the stands arately. For example, $SE_M = \frac{SD}{\sqrt{N}} = \frac{2.4}{\sqrt{2}}$	ard errors nple, for $\frac{49}{\overline{4}} = 1.22$	rs for each the first gr 25	mean roup.		
Outcome					95% Confider M	nce Interv ean	val for			"Minimum" and
Level 1	N I	Mean	Std. Deviation	Std. Error	Lower Bound	Upper	Bound	Minimum	Maximum	"Maximum" values
Level 2	4	2.0000	2.44949	1 22474	2 1023		9 8977	4 00	9.00	are the lowest and
Level 3	4	7.0000	2.44949	1.22474	3.1023	1	10,8977	4.00	9.00	each group.
Total	12	5.0000	3.16228	.91287	2.9908	-	7.0092	.00	9.00	
These "Total" values	s are all cald	culated for	the set of data	as a whole	e (i.e., not	This se	ection prov	vides a con	fidence interval	around (centered on)
same for each of the	e group valu	les, the SE	E and CI will als	so be the sa	ame:	critical	value. Spe	ecifically, the	he <i>t</i> statistic (wi	th 3 <i>df</i>) that has a
$SE = \frac{SD}{2} = \frac{3.162}{2}$	$\frac{2}{-0.012}$					probabi	oility of .05	equals 3.1	182. For exampl	e, for the first group:
$SL_M = \frac{1}{\sqrt{N}} = \frac{1}{\sqrt{12}}$	0.913		2, 170)(0, 012)			$CI_M =$	$= M \pm (t_{CR})$	$RITICAL)(SE_{I})$	$_{M}) = 2.000 \pm (3)$.182)(1.225)
$CI_M = M \pm (t_{CRITIC})$ Thus, the researche is somewhere betwee	$r = (SE_M) =$ r estimates teen 2.991 ar	that the trund	2.179)(0.913) Je population gi knowing it may	rand (or ov not).	erall) mean	Thus, tl somew	the researd here betw	cher estima een -1.898	ates that the tru 8 and 5.898 (kn	e population mean is owing it may not).
Outcome		AN	OVA				"Mean Source	Squares" a For each i	ire estimates of	the variance for each
	Sum of			F				SS	S _{RETWEEN} 56.0	00
Between Groups	Squares	df 2	Mean Square	1.66	Sig.		MS _{BET}	$T_{WEEN} = \frac{1}{dj}$	$\frac{f_{BETWEEN}}{f_{BETWEEN}} = \frac{1}{2}$	= 28.000
Within Groups	54.000	9	6.000	4.00	.041	2	MS _{WT}	$T_{HIN} = \frac{SS_W}{JE}$	$\frac{V_{ITHIN}}{0} = \frac{54.000}{0}$	= 6.000
Total	110.000	11						a_{J_W}	VITHIN 9	
"Within Groups" stat function of the group Because SS for eac calculable ($SS = SD$ $SS_{WITHIN} = SS_1 + S$	istics are a b variabilities h group is $y^2 x df$): $SS_2 + SS_2$	s. gr	etween Groups oup means and $SS_{BETWEEN} = \sum_{SS_{BETWEEN}} = 4($	statistics sample single $n_{GROUP}(M)$ $(2-5)^2 + 4$	are a function o zes: $G_{GROUP} - M_{TOTAL}$ $k(6-5)^2 + 4(7 - 3)^2$	f the 1 ² - 5) ²	The "F" variance $F = \frac{M}{r}$	statistic is e estimate <i>IS_{BETWEEN} MS_{WITHIN}</i>	a ratio of the be s: $=\frac{28.000}{6.000} = 4.6$	tween and within group 67
$SS_{WITHIN} = 18 + 1$ $df_{WITHIN} = df_1 + a$	8 + 18 = 54 $df_2 + df_3 = 9$	4.0 9	$SS_{BETWEEN} = 56$ $df_{BETWEEN} = #g$	5.000 groups — 1	= 2		probabi	lity (p) of .	041, a statistica	l.oo7 nas a two-tailed Ily significant finding.

	Oneway (Po		Tukey's H comparise pairwise c	ISD procedur ons between comparisons,	e is appropr groups. The including th	iate for post-ho output lists all ose that are red	c pairwise possible lundant.		
Dependent Variable: Outcome									
/	Tukey HSD		Mean Difference			95% Confide	ance Interval		
	(I) Factor	(J) Factor	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound		
	Level 1	Level 2	-4.00000	1.73205	.106	-8.8359	.8359		
		Level 3	-5.00000*	1.73205	.043	-9.8359	1641		
	Level 2	Level 1	4.00000	1.73205	.106	8359	8.8359		
		Level 3	-1.00000	1.73205	.835	-5.8359	3.8359		
<u></u>	Level 3	Level 1	5.00000*	1.73205	.043	.1641	9.8359	\mathbf{N}	
	\mathbf{X}	Level 2	1.00000	1.73205	.835	-3.8359	5.8359		
	* The mean differe	ance is significant a	t the 05 level						

"Mean Difference (I-J)" is the difference between the means for the "I" and "J" groups. Even though half of the listed comparisons are redundant, the mean differences will have the opposite signs because of subtraction order. This will also change the signs of the associated confidence intervals.

Homogeneous Subsets

Tukey HSD

		Subset for		
Factor	N	1	2	
Level 1	4	2.0000	1	
Level 2	4	6.0000	6.0000	
Level 3	4		7.0000	
Sig.		.106	.835	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

These "Standard Errors" are for the difference between the two group means. The values are a function of the MS_{WITHIN} (from the ANOVA) and the sample sizes:

$$SE_{DIFF} = \sqrt{\left(\frac{MS_{WITHIN}}{n_{GROUP}}\right) + \left(\frac{MS_{WITHIN}}{n_{GROUP}}\right)}$$
$$SE_{DIFF} = \sqrt{\left(\frac{6.000}{4}\right) + \left(\frac{6.000}{4}\right)} = 1.732$$

In this case, because all groups are of the same size, the standard error for each comparison is the same.

The "Sig." column provides the probability of the HSD statistic (which is not listed). The HSD statistic is a function of the "Mean Difference" and the "Std. Error". For the first comparison in the example:

$$HSD = \frac{M_1 - M_2}{SE_{DIFF}} = \frac{-4.000}{1.732} = 2.309$$

An HSD of 2.309 (with 2 df_{BETWEEN} and 9 df_{WITHIN} like in the ANOVA source table) has a two-tailed probability (*p*) of .106, which is not a statistically significant finding.

This section provides confidence intervals around (centered on) the "Mean Differences." Calculation requires the appropriate critical value. Specifically, the HSD statistic (with 2 df_{BETWEEN} and 9 df_{WITHIN}) that has a probability of .05 equals 3.068. For the first comparison in the example:

 $CI_{DIFF} = M_{DIFF} \pm (HSD_{CRITICAL})(SE_{DIFF})$ $CI_{DIFF} = -4.000 \pm (2.792)(1.732)$

Thus, the estimates that the true population mean difference is somewhere between -8.836 and 0.836 (knowing that the estimate could be incorrect).

"Homogeneous Subsets" provide groupings for the means. Means within the same subset are not significantly different from each other (note the "Sig." value at the bottom of the column for the subset). This offers a useful summary of the comparisons as analyzed above.

General Linear Model (Repeated Measures ANOVA)

(Note that some aspects of this output have been deleted and rearranged for the sake of presentation!)

Tests of Between-Subjects Effects

Measure: MEASURE_1 Transformed Variable: Average								
Source	Type III Sum of Squares	df	Mean Square	F	Sig.			
Intercept	128.000	1	128.000	14.222	.033	\rightarrow		
Error	27.000	3	9.000					

Tests of Within-Subjects Effects

Measure: Source	MEASURE_1	Type III Sum				The "Mear the degree
		of Squares	df	Mean Square	F	Sig.
Factor	Sphericity Assumed	32.000	1	32.000	10.667	.047
	Greenhouse-Seisser	32.000	1.000	32.000	10.667	.047
	Huynh-Feldt	32.000	1.000	32.000	10.667	.047
	Lower bound	32.000	1.000	32.000	10.667	.047
Error(tim	e) Sphericity Assumed	9.000	3	3.000	>1	
↑	Greenhouse-Geisser	9.000	3.000	3.000		
	Huynh-Feldt	9.000	3.000	3.000		
	Lower-bound	9.000	3.000	3.000		

These rows provide statistics adjusted for the "Sphericity" test (not shown). Because that test showed no violation of the assumption, these statistics show the exact same results as those in which sphericity is assumed.

The "Within-Subjects Error" is a function of variabilities of the separate levels or conditions of the factor and the "between-subjects error" given above. Because SS for each level can be determined ($SS = SD^2 x df$, which equals 18.000 for each of the two outcomes):

 $SS_{ERROR} = SS_1 + SS_2 - SS_{SUBJECTS}$ $SS_{ERROR} = 18.000 + 18.000 - 27.000 = 9.000$ $df_{ERROR} = df_1 + df_2 - df_{SUBJECTS} = 3 + 3 - 3 = 3.000$

The "Mean Square" is the usual ratio of the Sum of Squares to the degrees of freedom.

The "Between-Subjects Intercept" here refers to the average score of the participants in the study and the significance test determines whether that average is different from zero. This is often not an informative test.

"Between-Subjects Error" refers to the average differences across the participants of the study. This Sum of Squares is not easily determined from the summary statistics output, but rather from the data (and the calculations are therefore not shown here). However:

$$df_{SUBJECTS} = #subjects - 1 = 3$$

The "Mean Square" is the usual ratio of the Sum of Squares to he degrees of freedom.

The statistics for the effect (or change) on the "Factor" are functions of the means of the levels or conditions and the sample sizes:

$$\begin{split} SS_{EFFECT} &= \sum_{level} n_{Level} (M_{Level} - M_{TOTAL})^2 \\ SS_{EFFECT} &= 4(2.0 - 4.0)^2 + 4(6.0 - 4.0)^2 \\ SS_{EFFECT} &= 32.000 \\ df_{EFFECT} &= \#levels - 1 = 1 \end{split}$$

The "Mean Square" is the usual ratio of the Sum of Squares to the degrees of freedom.

$$MS_{EFFECT} = \frac{SS_{EFFECT}}{df_{EFFECT}} = \frac{32.000}{1} = 32.000$$

The "F" statistic is a ratio of the effect and within-subjects error variance estimates:

$$F = \frac{MS_{EFFECT}}{MS_{ERROR}} = \frac{32.000}{3.000} = 10.667$$

An *F* with 1 and 3 *df* that equals 10.667 has a two-tailed probability of .047, a statistically significant finding.

Univariate Analysis of Variance (Factorial ANOVA)

Descriptive Statistics

	Depende	nt Variable	e: Outcome				//	anaryzing
	FactorA	FactorB	Mean	Std. Deviation	Ν	/	//I	Those dec
/	Level 1	Level 1	2.0000	2.44949	4			represent
ζ		Level 2	7.0000	2.44949	4		\square	other facto
<		Total	4.5000	3.50510	8	> 1		variable as
	Level 2	Levei 1	6.0000	2.44949	4	/	//	
\langle		Level 2	5.0000	2.44949	4	>	/	These des
<		Totai	5.5000	2.32993	8			analyzing
	Total	Level 1	4.0000	3.11677	8			line Fiequ
\leq		Level 2	6.0000	2.50713	8			
<		Total	5.0000	2.92119	16		The	e "Intercept"

These descriptive statistics are calculated separately for each condition as defined by the factors. They are not identical to the values obtained from analyzing the variable as a whole.

These descriptive statistics are calculated separately for each factor. They represent the marginal means of one factor collapsing across the levels of the other factor. They are not identical to the values obtained from analyzing the variable as a whole.

These descriptive statistics represent the grand (or overall) values obtained from analyzing the variable as a whole. They are identical to what would be obtained if the "Frequencies" or "Descriptives" procedure had been used.

> The "Corrected Model" statistics reflect the overall between-group variability. They are a function of the group means and sample sizes.

 $SS_{MODEL} = \sum n_{GROUP} (M_{GROUP} - M_{TOTAL})^2$ $SS_{MODEL} = 4(2.000 - 5.000)^2 + 4(7.000 - 5.000)^2 +$ $4(6.000 - 5.000)^2 + 4(5.000 - 5.000)^2$ $SS_{MODEL} = 56.000$ $df_{MODEL} = #groups - 1 = 3$

> "Mean Squares" are estimates of the variances associated with each source. For the "Factor A * Factor B" interaction:

$$MS_{INTER} = \frac{SS_{INTER}}{df_{INTER}} = \frac{36.000}{1} = 36.000$$

The "F" statistic is a ratio of the effect and within group (error) variance estimates. For the "Factor A * Factor B" interaction:

$$F_{INTER} = \frac{MS_{INTER}}{MS_{ERROR}} = \frac{36.000}{6.000} = 6.000$$

An F with 1 and 12 df that equals 6.000 has a two-tailed probability of .031, which is a statistically significant finding.

 $SS_{FACTORB} = 8(4-5)^2 + 8(6-5)^2$

 $df_{FACTORB} = #levels - 1 = 1$

 $SS_{FACTORB} = 16.000$

Type III Sum of Squares F df Mean Square Source Sig. 3 Corrected Model 56.000^a 18.667 3.111 .067 66.667 400.000 1 400.000 .000 Intercept 4.000 .430 Factor A 4.000 .667 Factor B 16.000 16.000 2.667 .128 Factor A * Factor B 36.000 1 36.000 6.000 .031 12 Error 72.000 6.000 Total 528.000 The "Factor A * Factor B" (interaction) statistics reflect the Corrected Total 128.000 between- group variability not accounted for by the factors a. R Squared = .438 (Adjusted R Squared = .297) taken individually: $SS_{INTER} = SS_{MODEL} - SS_{FACTORA} - SS_{FACTORB}$ $SS_{INTER} = 56.000 - 4.000 - 16.000 = 36.000$ The "Factor A" and "Factor B" statistics are a function of the level (marginal) $df_{INTER} = df_{MODEL} - df_{FACTORA} - df_{FACTORB} = 1$ means and sample sizes. For "Factor B": $SS_{FACB} = \sum n_{LEVEL} (M_{LEVEL} - M_{TOTAL})^2$

"Error" statistics are a function of the within group variabilities. Because SS for each group can be determined ($SS = SD^2 x df$):

statistics are generally

not informative.

 $SS_{ERROR} = SS_1 + SS_2 + SS_3 + SS_4$ $SS_{ERROR} = 18.000 + 18.000 + 18.000 + 18.000 = 72.000$ $df_{ERROR} = df_1 + df_2 + df_3 + df_4 = 12$