This page analyzes bivariate regression models using raw data input.
Preliminary Tasks
Data Entry
This code inputs the variable names and creates a viewable data frame. Note that analyses assume that the second variable is the criterion and the first variable the predictors.
Summary Statistics
This code obtains the descriptive statistics for the data frame.
(BivariateData) |> describeMoments()
Summary Statistics for the Data
N M SD Skew Kurt
Predictor 10.000 8.000 1.414 0.000 -0.738
Criterion 10.000 11.000 2.211 -0.617 -0.212
(BivariateData) |> describeCorrelations()
Correlations for the Data
Predictor Criterion
Predictor 1.000 0.533
Criterion 0.533 1.000
Analyses of the Overall Model
This section produces analyses of the overall regression model.
This code will produce a source table associated with the regression model.
(BivariateData) |> describeModel()
Source Table for the Regression Model
SS df MS
Model 12.500 1.000 12.500
Error 31.500 8.000 3.938
Total 44.000 9.000 4.889
Confidence Interval
This code will produce the confidence interval for R Squared.
(BivariateData) |> estimateModel()
Proportion of Variance Accounted For by the Regression Model
Est LL UL
Model 0.284 0.000 0.555
The code defaults to 90% confidence intervals. This can be changed if desired.
(BivariateData) |> estimateModel(conf.level = .95)
Proportion of Variance Accounted For by the Regression Model
Est LL UL
Model 0.284 0.000 0.600
Significance Test
This code will calculate NHST for the regression model.
(BivariateData) |> testModel()
Hypothesis Test for the Regression Model
F df1 df2 p
Model 3.175 1.000 8.000 0.113
Analyses of the Regression Coefficients
This section analyses the regression coefficients obtained from the overall model.
Confidence Intervals
This code will provide a table of confidence intervals for each of the regression coefficients.
(BivariateData) |> estimateCoefficients()
Confidence Intervals for the Regression Coefficients
Est SE LL UL
(Intercept) 4.333 3.794 -4.415 13.082
Predictor 0.833 0.468 -0.245 1.912
This code will produce a graph of the confidence intervals for each of the regression coefficients.
(BivariateData) |> plotCoefficients()
The code defaults to 95% confidence intervals. This can be changed if desired.
(BivariateData) |> estimateCoefficients(conf.level = .99)
Confidence Intervals for the Regression Coefficients
Est SE LL UL
(Intercept) 4.333 3.794 -8.397 17.063
Predictor 0.833 0.468 -0.736 2.403
For the graph, it is possible to plot just coefficients for the predictors (minus the intercept) in addition to changing the confidence level. A comparison line and region of practical equivalence can also be added.
(BivariateData) |> plotCoefficients(conf.level = .99, line = 0, rope = c(-.5, .5), intercept = FALSE)
Significance Tests
This code will produce a table of NHST separately for each of the regression coefficients. In this case, all the coefficients are tested against a value of zero.
(BivariateData) |> testCoefficients()
Hypothesis Tests for the Regression Coefficients
Est SE t p
(Intercept) 4.333 3.794 1.142 0.286
Predictor 0.833 0.468 1.782 0.113
Standardized Coefficients
This code will provide a table of confidence intervals for the standardized coefficient.
(BivariateData) |> standardizeCoefficients()
Confidence Intervals for the Standardized Regression Coefficients
Est SE LL UL
Predictor 0.833 0.468 -0.245 1.912
As in other places, the code defaults to a 95% confidence interval. This can be changed if desired.
(BivariateData) |> standardizeCoefficients(conf.level = .99)
Confidence Intervals for the Standardized Regression Coefficients
Est SE LL UL
Predictor 0.833 0.468 -0.736 2.403
Analyses of Regression Values
This section provides analyses of individual predicted values.
Regression Line
This code produces a plot of the regression line (with confidence and prediction intervals suppressed).
(BivariateData) |> plotLine(interval = "none")
This code adds a scatter of data points to the regression plot.
(BivariateData) |> plotLine(interval = "none", points = TRUE)
Confidence and Prediction Intervals
This code provides estimates confidence and prediction limits for a specific value of the Predictor (value=4).
(BivariateData) |> estimateLine(value = 8)
Confidence and Prediction Intervals for the Regression
Est CI.LL CI.UL PI.LL PI.UL
8 11.000 9.553 12.447 6.201 15.799
This code plots the confidence interval associated with the regression line and labels the interval for the specific value of the Predictor.
(BivariateData) |> plotLine(value = 8, interval = "confidence")
This code plots the prediction interval associated with the regression line and labels the interval for the specific value of the Predictor.
(BivariateData) |> plotLine(value = 8, interval = "prediction")