CALM

Using Custom Contrast Codes

CALM also makes it possible to develop custom codes to test specific hypotheses. The examples below use custom codes in the context of a General Linear Model to test the associated hypotheses.


The Data

For the sake of example, this site uses the following data. For reference, the group means are displayed.

mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
mtcars$cyl <- factor(mtcars$cyl) 
summary(lm(mpg~cyl,data=mtcars))
## 
## Call:
## lm(formula = mpg ~ cyl, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2636 -1.8357  0.0286  1.3893  7.2364 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  26.6636     0.9718  27.437  < 2e-16 ***
## cyl6         -6.9208     1.5583  -4.441 0.000119 ***
## cyl8        -11.5636     1.2986  -8.905 8.57e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.223 on 29 degrees of freedom
## Multiple R-squared:  0.7325, Adjusted R-squared:  0.714 
## F-statistic:  39.7 on 2 and 29 DF,  p-value: 4.979e-09
tapply(mtcars$mpg,mtcars$cyl,mean)
##        4        6        8 
## 26.66364 19.74286 15.10000

Orthogonal Contrasts

Here, the custom hypotheses a specified and then CALM is used to create the proper codes.

GM <- c(1/3,1/3,1/3)
H1 <- c(1,-1/2,-1/2)
H2 <- c(0,1,-1)
ex_custom.orthogonal <- rbind(GM,H1,H2)
custom.orthogonal <- calm.encode(ex_custom.orthogonal)
custom.orthogonal
##         GM      H1   H2
## GROUP 1  1  0.6667  0.0
## GROUP 2  1 -0.3333  0.5
## GROUP 3  1 -0.3333 -0.5
contrasts(mtcars$cyl) <- custom.orthogonal[,-1]
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 20.501856  0.5935308 34.542197 4.104586e-25
## cylH1        9.242208  1.2251189  7.543927 2.574044e-08
## cylH2        4.642857  1.4920048  3.111825 4.152209e-03

In this custom example, the intercept is equivalent to the mean of the group means. The first parameter represents the difference between the first group and mean of the subsequent groups. The second parameter represents the difference between the second and third groups.

Nonorthogonal Contrasts

Again, the custom hypotheses a specified and then CALM is used to create the proper codes.

GM <- c(1,0,0)
H1 <- c(1,-1/2,-1/2)
H2 <- c(1,-1,0)
ex_custom.nonorthogonal <- rbind(GM,H1,H2)
custom.nonorthogonal <- calm.encode(ex_custom.nonorthogonal)
custom.nonorthogonal
##         GM H1 H2
## GROUP 1  1  0  0
## GROUP 2  1  0 -1
## GROUP 3  1 -2  1
contrasts(mtcars$cyl) <- custom.nonorthogonal[,-1]
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 26.663636  0.9718008 27.437347 2.688358e-22
## cylH1        9.242208  1.2251189  7.543927 2.574044e-08
## cylH2        6.920779  1.5583482  4.441099 1.194696e-04

In this custom example, the intercept is equivalent to the mean of the first group. The first parameter represents the difference between the first group and mean of the subsequent groups. The second parameter represents the difference between the first and second groups.