CALM

Using Common Contrast Codes

CALM includes a complete set of commonly used coding schemes that can be used directly in linear model specifications. The examples below use the built-in codes in the context of a General Linear Model to test the associated hypotheses.


The Data

For the sake of example, this site uses the following data. For reference, the group means are displayed.

mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
mtcars$cyl <- factor(mtcars$cyl) 
summary(lm(mpg~cyl,data=mtcars))
## 
## Call:
## lm(formula = mpg ~ cyl, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2636 -1.8357  0.0286  1.3893  7.2364 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  26.6636     0.9718  27.437  < 2e-16 ***
## cyl6         -6.9208     1.5583  -4.441 0.000119 ***
## cyl8        -11.5636     1.2986  -8.905 8.57e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.223 on 29 degrees of freedom
## Multiple R-squared:  0.7325, Adjusted R-squared:  0.714 
## F-statistic:  39.7 on 2 and 29 DF,  p-value: 4.979e-09
tapply(mtcars$mpg,mtcars$cyl,mean)
##        4        6        8 
## 26.66364 19.74286 15.10000

Treatment (First) Contrasts

contrasts(mtcars$cyl) <- treatment.first
summary(lm(mpg~cyl,data=mtcars))$coefficients
##               Estimate Std. Error   t value     Pr(>|t|)
## (Intercept)  26.663636  0.9718008 27.437347 2.688358e-22
## cyl6-4       -6.920779  1.5583482 -4.441099 1.194696e-04
## cyl8-4      -11.563636  1.2986235 -8.904534 8.568209e-10

As specified, the intercept is equivalent to the mean of the first group. The additional parameters represent the difference between each group and the first group.

Treatment (Last) Contrasts

contrasts(mtcars$cyl) <- treatment.last
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 15.100000  0.8614094 17.529412 5.660681e-17
## cyl4-8      11.563636  1.2986235  8.904534 8.568209e-10
## cyl6-8       4.642857  1.4920048  3.111825 4.152209e-03

As specified, the intercept is equivalent to the mean of the last group. The additional parameters represent the difference between each group and the last group.

Control (First) Contrasts

contrasts(mtcars$cyl) <- control.first
summary(lm(mpg~cyl,data=mtcars))$coefficients
##               Estimate Std. Error   t value     Pr(>|t|)
## (Intercept)  20.502165  0.5935276 34.542900 4.102221e-25
## cyl6-4       -6.920779  1.5583482 -4.441099 1.194696e-04
## cyl8-4      -11.563636  1.2986235 -8.904534 8.568209e-10

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the first group.

Control (Last) Contrasts

contrasts(mtcars$cyl) <- control.last
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 20.502165  0.5935276 34.542900 4.102221e-25
## cyl4-8      11.563636  1.2986235  8.904534 8.568209e-10
## cyl6-8       4.642857  1.4920048  3.111825 4.152209e-03

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the last group.

Deviation (First) Contrasts

contrasts(mtcars$cyl) <- deviation.first
summary(lm(mpg~cyl,data=mtcars))$coefficients
##               Estimate Std. Error    t value     Pr(>|t|)
## (Intercept) 20.5021645  0.5935276 34.5428996 4.102221e-25
## cylMD2      -0.7593074  0.9203038 -0.8250616 4.160721e-01
## cylMD3      -5.4021645  0.7743494 -6.9763911 1.139163e-07

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the grand mean. The first group is not compared.

Deviation (Last) Contrasts

contrasts(mtcars$cyl) <- deviation.last
summary(lm(mpg~cyl,data=mtcars))$coefficients
##               Estimate Std. Error    t value     Pr(>|t|)
## (Intercept) 20.5021645  0.5935276 34.5428996 4.102221e-25
## cyl1         6.1614719  0.8167460  7.5439269 2.574044e-08
## cyl2        -0.7593074  0.9203038 -0.8250616 4.160721e-01

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the grand mean. The last group is not compared.

Helmert (Forward) Contrasts

contrasts(mtcars$cyl) <- helmert.forward
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 20.502165  0.5935276 34.542900 4.102221e-25
## cylFH1       9.242208  1.2251189  7.543927 2.574044e-08
## cylFH2       4.642857  1.4920048  3.111825 4.152209e-03

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the mean of the subsequent groups.

Helmert (Reverse) Contrasts

contrasts(mtcars$cyl) <- helmert.reverse
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 20.502165  0.5935276 34.542900 4.102221e-25
## cylRH2      -6.920779  1.5583482 -4.441099 1.194696e-04
## cylRH3      -8.103247  1.1615242 -6.976391 1.139163e-07

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the mean of the previous groups.

Repeated (Forward) Contrasts

contrasts(mtcars$cyl) <- repeated.forward
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 26.663636  0.9718008 27.437347 2.688358e-22
## cyl4-6       6.920779  1.5583482  4.441099 1.194696e-04
## cyl6-8       4.642857  1.4920048  3.111825 4.152209e-03

As specified, the intercept is equivalent to the mean of the first group. The additional parameters represent the difference between each group and the subsequent group.

Repeated (Reverse) Contrasts

contrasts(mtcars$cyl) <- repeated.reverse
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 26.663636  0.9718008 27.437347 2.688358e-22
## cyl6-4      -6.920779  1.5583482 -4.441099 1.194696e-04
## cyl8-6      -4.642857  1.4920048 -3.111825 4.152209e-03

As specified, the intercept is equivalent to the mean of the first group. The additional parameters represent the difference between each group and the previous group.

Difference (Forward) Contrasts

contrasts(mtcars$cyl) <- difference.forward
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 20.502165  0.5935276 34.542900 4.102221e-25
## cyl4-6       6.920779  1.5583482  4.441099 1.194696e-04
## cyl6-8       4.642857  1.4920048  3.111825 4.152209e-03

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the subsequent group.

Difference (Reverse) Contrasts

contrasts(mtcars$cyl) <- difference.reverse
summary(lm(mpg~cyl,data=mtcars))$coefficients
##              Estimate Std. Error   t value     Pr(>|t|)
## (Intercept) 20.502165  0.5935276 34.542900 4.102221e-25
## cyl6-4      -6.920779  1.5583482 -4.441099 1.194696e-04
## cyl8-6      -4.642857  1.4920048 -3.111825 4.152209e-03

As specified, the intercept is equivalent to the mean of the group means. The additional parameters represent the difference between each group and the previous group.